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A linear-scaling algorithm based on a divide-and-conquer �DC� scheme has been designed to perform
large-scale molecular-dynamics �MD� simulations, in which interatomic forces are computed quantum me-
chanically in the framework of the density functional theory �DFT�. Electronic wave functions are represented
on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative
solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial
decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel com-
puters. The largest benchmark tests include 11.8�106-atom �1.04�1012 electronic degrees of freedom� cal-
culation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to
control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved
during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in
which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-
distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene.
The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conven-
tional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the
result reaches the asymptotic value.
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I. INTRODUCTION

Mechanically induced chemical reactions are important in
many material processes.1 However, theoretical study of
mechanochemical processes is challenging because of the in-
terplay between chemical reactions, which are local in na-
ture, and long-range stress phenomena. Examples are ener-
getic materials, in which chemical reactions sustain shock
waves,2–4 and stress corrosion cracking, where chemical re-
actions at the crack tip are inseparable from long-range stress
fields.5 Furthermore, these chemical reactions are sensitive to
material microstructures such as shock-front structures,
voids, and grain boundaries.4 These factors require
molecular-dynamics �MD� simulations involving multimil-
lion atoms,6–8 in which chemical reactions must be described
quantum mechanically.9,10

One computational approach to quantum mechanically in-
formed multimillion-atom MD simulations4,11 employs
environment-dependent interatomic potentials12 based on re-
active bond orders13,14 for chemical bond formation and
breakage as well as variable atomic charges15–19 to describe
charge transfers. In the reactive force field �ReaxFF�
approach,12 the parameters in the interatomic potential are
“trained” to best fit thousands of quantum-mechanical �QM�
calculations on small �N�10� clusters of various atomic-
species combinations.3 Thus, the determination of the poten-
tial parameters that describe local chemistry in addition to
the bulk mechanical behavior of the material prior to MD
simulations constitutes the most critical and nontrivial part of
the ReaxFF MD approach. In addition, results of these semi-
empirical MD simulations need to be validated against more
accurate QM calculations, e.g., those based on the density
functional theory �DFT�.20–27

Alternatively, DFT calculations can be performed “on the
fly” to compute interatomic forces quantum mechanically
during a MD simulation.28–30 Unfortunately, DFT-based MD
simulations are rarely performed for N�102 atoms because
of the O�N3� computational complexity, which severely lim-
its their applicability. To reduce such high computational
complexity, we have recently developed a divide-and-
conquer �DC� on cellular decomposition framework to de-
sign linear-scaling algorithms �in which the computation
time is proportional to the problem size� on massively paral-
lel computers for a broad range of applications.11 In the con-
text of the DFT, it amounts to the DC-DFT algorithm,31–33

which represents the physical system as a union of overlap-
ping spatial domains and computes physical properties as
linear combinations of domain properties. The DC-DFT al-
gorithm is based on a data locality principle called the quan-
tum near-sightedness,34 which naturally leads to O�N� QM
calculations.35–59 In this paper, we present a hierarchical-grid
DC-DFT algorithm,60 in which DFT calculations of atomic
clusters �or domains� involved in the DC scheme are per-
formed using a real-space approach that numerically repre-
sents electronic wave functions on grid points.61,62 The real-
space grid is augmented with a coarser multigrid to
accelerate the convergence of iterative solutions.10,30,38,63–65

Furthermore, finer grids are adaptively generated near
atoms5,66 in order to accurately operate ionic
pseudopotentials67–69 for describing electron-ion interactions.
We include electron-electron interactions using the general-
ized gradient approximation70 to the exchange-correlation
energy. Since the DC-DFT algorithm involves solutions to
small �i.e., the average number of atoms per domain, n
�50� electronic-structure problems, it is free from some of
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the convergence problems often associated with iterative so-
lutions in large electronic-structure calculations. For ex-
ample, it is difficult to achieve convergence for nontrivial
electronic-structure problems such as those in amorphous
materials with a large number ��104� of atoms using a large
�105 grid points per electronic wave function� basis set, un-
less a good initial guess for the wave functions and the elec-
tron number density is available.29 Our numerical tests show
that the DC-DFT algorithm has robust convergence proper-
ties such that, starting from random initial wave functions,
converged solutions are obtained for such problems. The
DC-DFT algorithm has a well-defined set of localization pa-
rameters �the size of a domain and the width of buffer layers
to augment each domain for avoiding artificial boundary ef-
fects�, with which the energy converges rapidly. The DC-
DFT MD algorithm does not suffer from the energy drift
problem, which plagues many O�N� DFT-based MD algo-
rithms, especially with large basis sets ��105 unknowns per
electron, necessary for the transferability of accuracy�.

The DC-DFT algorithm on the hierarchical real-space
grids is implemented on massively parallel computers using
spatial decomposition,8,11,38 in which the physical system is
divided into subsystems of equal volume and each subsystem
is assigned to a processor or a small group of processors in a
parallel computer. Each subsystem �or processor� contains
one or more domains of the DC-DFT algorithm. For each
domain, an O�n3� DFT algorithm is employed to calculate its
electronic structures, with little information needed from
other processors. The resulting large computation/
communication ratio makes this approach highly scalable on
massively parallel computers.

The robust convergence properties of the hierarchical-grid
DC-DFT algorithm and its excellent scalability on parallel
computers have allowed us to perform first-principles MD
simulations of several large systems, including liquid ru-
bidium �Rb�, graphene, and cadmium selenide �CdSe� nano-
rods.

This paper is organized as follows. The next section de-
scribes the hierarchical real-space grid DC-DFT algorithm
for quantum mechanically based MD simulations and its par-
allelization. Simulation results are presented in Sec. III, and
Sec. IV contains a summary.

II. DIVIDE-AND-CONQUER DENSITY-FUNCTIONAL-
THEORY ALGORITHM ON HIERARCHICAL

REAL-SPACE GRIDS

In the Kohn-Sham formulation21 of the DFT,20,22 the en-
ergy of a physical system is expressed as a functional of N

atomic positions, R� N= �RI � I=1, . . . ,N�, and Nband wave func-
tions �or Kohn-Sham orbitals�, �Nband= ��n�r�� �n
=1, . . . ,Nband�:

E��� = Ts��� +	 dr���r��vloc�r�� + Enl���

+
1

2
	 dr�	 dr��

��r����r���
�r� − r���

+ Exc��� + 

I�J

ZIZJ

�R� I − R� J�
.

�1�

Here, Ts��� is the kinetic energy of a noninteracting electron

gas in its ground state with the valence-electron number den-
sity,

��r�� = 2 

n=1

Nband

��n�r���2, �2�

where only doubly occupied states are considered �we use
the atomic unit�. In Eq. �1�,

vloc�r�� = 

I

vI
loc�r� − R� I� �3�

is a local ionic pseudopotential,68

Enl��� = 

n



I



lm
	 dr��n

*�r���lm
I �r� − R� I� 	 dr���lm

I*�r��

− R� I��n�r��� �4�

is a nonlocal pseudopotential energy,67–69 where �lm
I �r�−R� I� is

a projection state localized at R� I with the angular momentum
quantum numbers l and m, Exc��� is the exchange-correlation
energy, and the last term is the electrostatic energy between
ions with valence �ZI � I=1, . . . ,N�.

Given atomic positions R� N, the ground-state energy is ob-
tained by minimizing E��� with respect to �Nband, subjected
to orthonormality constraints,

	 dr��n
*�r���n��r�� = �nn� � �1 �n = n��

0 �n � n�� .
 �5�

The constrained minimization leads to the Kohn-Sham equa-
tions,

Ĥ�n�r�� = 	n�n�r�� , �6�

where the Kohn-Sham Hamiltonian operator Ĥ is defined
through

Ĥ�n�r�� = �−
1

2
�2 + vloc�r�� + vH�r�� + vxc�r����n�r��

+ 

I



lm

�lm
I �r� − R� I� 	 dr���lm

I*�r�� − R� I��n�r��� .

�7�

In Eq. �7�, �2 is the Laplacian operator,

vH�r�� =	 dr��
��r���

�r� − r���
�8�

is the Hartree potential, and we use the generalized gradient
approximation70 to the exchange-correlation potential,
vxc�r��=�Exc /���r��, which is a function of the local value of
��r�� and its gradient ���r�� at r�.

A. Divide-and-conquer density functional theory

We have developed an embedded divide-and-conquer
�EDC� algorithmic framework11 based on data locality prin-
ciples to design linear-scaling algorithms for a wide range of
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scientific applications with tight error control, including the
DC-DFT algorithm in this paper. In EDC algorithms, spa-
tially localized subproblems are solved in a global embed-
ding field, which is efficiently computed with tree-based al-
gorithms �Fig. 1�. Examples of the embedding field are �1�
the electrostatic field in MD simulation,8 �2� the self-
consistent Kohn-Sham potential in the DFT,60 and �3� a
coarser but less computer-intensive simulation method in hi-
erarchical simulation, in which fine �e.g., DFT� simulations
are embedded in coarse �e.g., MD� simulations on demand
only when and where high accuracy is required.29,71,72

In the DC-DFT algorithm,31–33,42,60 the three-dimensional
space 
 is covered with overlapping domains �see Fig. 2�,


 = �
�


�. �9�

Each domain 
� is further decomposed into its subvolumes,


� = 
0� � �1� � �2�, �10�

where 
0� is the nonoverlapping core,


 = �
�


0�, 
0� � 
0 = 0 �� � � , �11�

and �1� and �2� are the primary and secondary buffer layers,
respectively.33 The core 
0� is enclosed with �1�, which in
turn is surrounded by �2� �Fig. 2�.

For each domain �, we define a domain support function
p��r�� such that it is only nonzero within the core and primary
buffer layer of the domain,

p��r�� = 0 if r� � 
0� � �1�, �12�

with the sum rule,



�

p��r�� = 1, �13�

satisfied at every spatial position r�. Because of the sum rule,
the valence-electron number density is exactly decomposed
into

��r�� = 

�

���r�� , �14�

where

���r�� = p��r����r�� �15�

is the partial contribution to the electron density from do-
main �.

The essential approximation in the DC-DFT algorithm is
the replacement of the self-consistent Kohn-Sham Hamil-

tonian Ĥ by its subspace approximation Ĥ�, which is for-
mally identical to Eq. �7�, but the Kohn-Sham equations,

Ĥ��n
��r�� = 	n

��n
��r�� , �16�

are solved in each domain 
� to obtain locally orthonormal
Kohn-Sham orbitals ��n

��r���:

	

�

dr��n
�*

�r���n�
� �r�� = �nn� � �1 �n = n��

0 �n � n�� .
 �17�

In Eq. �16�, 	n
� is the nth eigenvalue of Ĥ�. Boundary con-

ditions on ��n
��r��� are imposed at the domain boundary �
�.

We use either the rigid-wall boundary condition �in which

FIG. 1. Schematic of an embedded divide-and-conquer algorithm. �Left� The physical space is subdivided into spatially localized
domains, with local atoms constituting subproblems �bottom�, which are embedded in a global field �shaded� solved with a tree-based
algorithm. In the case of the DFT, the global field is the Kohn-Sham potential. �Right� To solve the subproblem in domain 
� in the
divide-and-conquer DFT algorithm, coarse multigrids �gray� are used to accelerate iterative solutions on the original real-space grid �corre-
sponding to the grid refinement level, l=3�. The bottom panel shows fine grids adaptively generated near the atoms �spheres� to accurately
operate the ionic pseudopotentials on the electronic wave functions.

FIG. 2. Schematic of the divide-and-conquer algorithm in two
dimensions. The physical space 
 is a union of overlapping do-
mains, 
=��
�. Each domain is further decomposed into the non-
overlapping core 
0�, the primary buffer layer �1� �shaded area�,
and the secondary buffer layer �2� �hatched area�. The width of the
primary and total �=primary+secondary� buffer layers are d1 and d,
respectively.
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the wave function vanishes at �
�� or the periodic boundary
condition. The wave function values in the secondary buffer
layer �2� may be contaminated by the artificial boundary
conditions at �
�. This is the reason why the domain support
function p��r�� is made zero in �2�,33 so that the contami-
nated wave function values do not contribute to the density
��r��. For the support function, we use a cubic interpolation
function such that both the function value and its derivative
are continuous at p��r��=0 and 1.

To determine the number of occupied local Kohn-Sham
orbitals in the DC-DFT algorithm, we first note that Eq. �2�
is an expansion of the valence-electron density,

��r�� = 2�r����	F − Ĥ��r�� , �18�

in terms of the eigenstates of the Kohn-Sham Hamiltonian Ĥ.
In Eq. �18�, �r�� is the coordinate eigenstate, the step function
��x� is 1 for x�0 and is 0 otherwise, and the Fermi energy
	F is determined from the number of valence electrons Nel
through the relation,

Nel =	 dr���r�� . �19�

In the DC-DFT algorithm, the local Kohn-Sham orbitals
��n

��r��� are compactly supported on each domain 
�, and
thus, the partial density ���r�� is expanded in terms of them as

���r�� = p��r��

n

f�	n
����n

��r���2, �20�

where f�	n
��=2��	F−	n

��. Accordingly, the normalization
condition, Eq. �19�, reads

Nel = 

�



n

f�	n
�� 	 dr�p��r����n

��r���2. �21�

In DFT-based MD simulations, we numerically integrate
Newton’s equations of motion,

MI
d2

dt2R� I = F� I, �22�

where the force F� I acting on the Ith ion is calculated from the
Hellmann-Feynman theorem as

F� I = F� I
ion + F� I

loc + F� I
nl = 


J��I�
ZIZJ

R� I − R� J

�R� I − R� J�3
+	 dr���r���r� − R� I�

dvloc

d�r� − R� I�
+ 


�



n

f�	n
��


lm
�	 dr�p��r���n

�*
�r��

��lm
I

��r� − R� I�
	 dr���lm

I* �r��

− R� I��n
��r��� +	 dr�p��r���n

�*
�r���lm

I �r� − R� I� 	 dr��
��lm

I*

��r�� − R� I�
�n

��r���� . �23�

In Eq. �23�, the ionic contribution F� I
ion can be computed ef-

ficiently with O�N� operations using the fast multipole

method �FMM�.73 Scalable FMM algorithms to compute F� I
ion

on parallel computers are described in our previous
publications.74,75 For systems with periodic boundary condi-
tions, methods based on the Ewald summation are effective,
including the O�N log N� particle mesh Ewald method.76 �A
parallel Ewald algorithm is described in Ref. 77.�

B. Hierarchical real-space grids

For efficient parallel implementation of DFT, we have de-
veloped a hierarchical real-space grid method based on
higher-order finite differencing61,62 and multigrid
acceleration.63,64 In the hierarchical-grid method, a real-
space multigrid is adaptively refined66 near each atom to ac-
curately operate the ionic pseudopotentials on the electronic
wave functions �see Fig. 1�.

In the high-order finite-difference method for calculating
the derivatives �i.e., kinetic-energy operator� in Eq. �7�, �n

��r��
and ��r�� are represented by numerical values on real-space
grid points. The kinetic-energy operator is expanded using
the finite-difference method as61

� �2�n�r��
�x2 �

r�=�xi,yj,zk�
= 


�=−L

L

C��n
��xi + �h,yj,zk� + O�h2L+2� ,

�24�

where h is the grid spacing, and L is the order of the finite-
difference method. Since the calculations are performed en-
tirely in real space, this method is most suitable for spatially
localized atomic configurations such as clusters, which is the
case in the DC-DFT algorithm. Since the finite-difference
expansion involves only short-ranged operations, an efficient
implementation on parallel computers is possible.37,38

The constrained minimization of E��� with respect to ��n
��

is performed iteratively based on the conjugate-gradient
�CG� method.78 The self-consistent minimization loop con-
sists of the following steps:

�1� Calculate the electronic potentials, vloc�r��, ��lm
I �r�

−R� I��, vH�r��, and vxc�r��, using the density ��r�� from the pre-
vious step or the starting value �in the case of the first step�.
These potentials are common to all the domains; the Hartree
potential is obtained by iterative solution to the Poisson
equation, �2vH�r��=−4���r��, using the multigrid method.79

�2� For all domains �
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�a� Perform a unitary transformation of ��n
�� to diagonal-

ize the Hamiltonian matrix, Hnn�
� =�
�

dr��n
�*�r��Ĥ��n�

� �r��.
�b� Improve ��n

��r��� iteratively using the CG method.
�c� Orthonormalize ��n

��r��� according to Eq. �17� with the
Gram-Schmidt method.78

�3� Determine the Fermi energy 	F to reproduce the num-
ber of valence electrons Nel by solving Eq. �21� using the
Newton-Raphson method.79

�4� Calculate the new density ��r�� according to Eqs. �14�
and �20�, using the updated ��n

��r���; refine ��r�� by mixing the
new and old densities using the Pulay charge-mixing
scheme.80

The steps 1–4 are repeated until the self-consistency be-
tween ��n

�� and ��r�� is achieved within a prescribed error
tolerance.

Step 2�b� in the self-consistent loop includes two inner
loops: One is associated with the band index n and the other
is the CG iteration for each band involving a loop index iCG.
To reduce long wavelength components of the residual, we
use the multigrid method.5,38,63 On a coarser grid, we solve
residual equations,

�−
1

2
�2 + v�r���n

��r�� = gn
��r�� , �25�

where

gn
��r�� = − �Ĥ� − 	n

���n
��r�� �26�

is a residual vector. In this method, the electronic potential
v�r�� as well as gn

��r�� on a fine grid are restricted to a coarser
grid using restriction operations. Here, the potential

v�r�� = vloc�r�� + vH�r�� + vxc�r�� �27�

excludes the nonlocal pseudopotential, since it is short
ranged and does not influence the solutions on coarser grids.
The solution �n

��r�� of Eq. �25� on the coarse grid is prolon-
gated to the fine grid and is added to �n

��r��.
The computational complexity of the DC-DFT algorithm

is O�N� for N atoms, as analyzed below. Since the most time
consuming part is step 2, we concentrate on the computa-
tional complexity of this step. The orthogonalization in step
2�c� requires O�Ndomainnband

2ngrid� operations, where Ndomain

is the number of domains, and nband and ngrid are the number
of Kohn-Sham orbitals and number of real-space grid points
per domain, respectively. Since we choose Ndomain=O�N�,
both nband and ngrid are O�n�=O�1�, where n=N /Ndomain is
the average number of atoms per domain. Consequently, this
operation scales as O�Nn3�=O�N�. All calculations in step 2
except for the orthogonalization require O�Ndomainnbandngrid�
=O�Nn2�=O�N� operations. The orthogonalization step,
which scales as O�Nn3�, is negligible38 for relatively small
domains �n�100� used in our calculations.

C. Parallelization

The hierarchical-grid DC-DFT algorithm has been imple-
mented on parallel computers based on spatial
decomposition,8,38 in which the physical system �with

lengths Lx, Ly, and Lz in the x, y, and z directions, respec-
tively� is divided into P= Px� Py � Pz rectangular sub-
systems of equal volume, and each subsystem is assigned to
a processor in a parallel computer consisting of P processors
�see Fig. 3�. Specifically, atom I at position RI
= �RIx ,RIy ,RIz� is assigned to processor p� �0, P−1�, where

p = pxPyPz + pyPz + pz,

p� = �RI�P�/L�� �� = x,y,z� . �28�

Each subsystem, in turn, consists of multiple domains.
In this parallelization scheme, each domain is local to a

processor, and the Kohn-Sham orbitals ��n
��r��� need not be

exchanged between processors. Consequently, there is no
need for the massive communication required for orthonor-
malization in conventional parallel DFT algorithms38. In-
stead, there are two major sources of interprocessor commu-
nications in the parallel DC-DFT algorithm. First, for the
computation of the total electron density ��r�� in a given do-

main 
�, partial contributions �����r��� within the primary
buffer-layer depth d1 need to be cached �i.e., copied by mes-
sage exchanges� from the processors that contain the nearest-
neighbor domains ��. Second, the positions of ions within
depth d+rc need to be cached from the nearest-neighbor pro-
cessors to compute ionic pseudopotentials. Here, d and rc are
the total buffer-layer width and the range of nonlocal pseudo-
potentials, respectively.

The computation time of the parallel DC-DFT algorithm
scales as O(�Ndomain / P�n3)=O(�N / P�n3). The communica-
tion time for the above two tasks, on the other hand, scales as
O(�N / P�2/3). The communication overhead of this algorithm,
O(�N / P�−1/3n−3), is extremely low, because of the small

FIG. 3. Schematic of the parallel divide-and-conquer algorithm
in two dimensions. The physical system is divided into subsystems,
P0 , . . . , P3, of equal volume, and each subsystem is assigned to a
processor in a parallel computer. Each subsystem, in turn, consists
of multiple nonoverlapping core domains, 
00, . . . ,
08. To perform
electronic-structure calculations on overlapping domains,

00, . . . ,
08, on processor P0, the contributions to the total electron
density, ��r��, within the primary buffer-layer depth d1 �see the
hatched area�, need to be cached from the nearest-neighbor proces-
sors. In addition, the ionic positions within width d+rc �enclosed by
dashed lines� need to be cached from the nearest-neighbor proces-
sors to compute ionic pseudopotentials. Here, d and rc are the total
buffer-layer width and the range of nonlocal pseudopotentials,
respectively.
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surface-to-volume ratio and the absence of communicating
O�n� Kohn-Sham orbitals. The parallel multigrid algorithm
to compute the Hartree potential from ��r�� requires addi-
tional interprocessor communications that scale as
O�log P�.81 For coarse-grained applications, in which
Ngrid / P� P �Ngrid is the total number of grid points�, how-
ever, this logarithmic overhead is negligible.

The parallel DC-DFT program is written in FORTRAN 90
with message passing interface for message passing. Scal-
ability tests of the parallel DC-DFT algorithm have been
performed on a wide range of platforms, including the
131 072-processor IBM BlueGene/L at the Lawrence Liver-
more National Laboratory �LLNL�, the 10 240-processor
SGI Altix 3000 at the NASA Ames Research Center, and the
2048-processor AMD Opteron-based Linux cluster at the
Collaboratory for Advanced Computing and Simulations of
the University of Southern California �USC�.

The BlueGene/L system at the LLNL comprises 65 536
computational node �CN� chips, each of which has two Pow-
erPC 400 processors �131 072 processors in total� with
700 MHz clock speed. On single CN, the two processors
share 512 Mbyte memory. Each processor has a 32 kbyte
instruction/data cache, a 2 Mbyte L2 cache, and a 4 Mbyte
L3 cache. The theoretical peak performance is 2.8 Gflops per
processor. Two types of interconnection �three-dimensional
torus and tree topologies� are designed for distinct purposes.
The torus network is used mostly for point-to-point commu-
nications, whereas the tree network is optimized for collec-
tive communications. The interconnection bandwidths are
175 and 350 Mbyte /s per link, respectively, for the two net-
works.

The SGI Altix 3000 system named Columbia at the
NASA Ames consists of 20 of SGI Altix model 3700 boxes,
each consisting of 512 Intel 1.5 GHz Itanium2 processors.
Each processor has 128 floating-point registers, a 32 kbyte
L1 cache, a 256 kbyte L2 cache, and a 6 Mbyte L3 cache,
and its theoretical peak performance is 6 Gflops. The SGI
NUMAlink4 interconnection provides 1 Tbyte memory glo-
bally shared among cluster nodes within an Altix box. We
have used up to four Altix boxes �up to 1920 processors� for
our benchmark.

USC-HPCC operates 1824-node Linux cluster with 15.8
Tflops Linpack performance. We have used up to 512 nodes
of dual-CPU dual-core AMD 2 GHz Opteron nodes �2048
processors in total�. Each node has 4 Gbytes memory, and
Myrinet interconnection provides 256 Mbyte /s bandwidth.
Single Opteron core has 64 kbyte instruction/data caches and
1 Mbyte L2 cache.

Figure 4 shows the execution time per MD step as a func-
tion of the number of processors for the DC-DFT based MD
algorithm to simulate alumina �Al2O3� systems on the Altix
3000. Here, the number of atoms N is scaled linearly with the
number of processors P as N=720P. In the DC-DFT calcu-
lations, each domain of size 6.66�5.76�6.06 Å3 contains
40 electronic wave functions, where each wave function is
represented on 283=21 952 grid points. The execution time
includes three self-consistent �SC� iterations to determine the
electronic wave functions and the Kohn-Sham potential, with
three CG iterations per SC cycle to refine each wave function
iteratively. The execution time increases only slightly as a

function of P, which signifies an excellent parallel efficiency.
We define the speed of a MD program as a product of the
total number of atoms and time steps executed per second.
The isogranular speedup is the ratio between the speed of P
processors and that of one processor. The parallel efficiency
is the speedup divided by P. The largest calculation on 1920
processors involves 1 382 400 atoms �121 385 779 200 elec-
tronic degrees of freedom�, for which the isogranular parallel
efficiency is 0.907. A better measure of the interbox scaling
efficiency based on NUMAlink4 is the speedup from 480
processors in one box to 1920 processors in four boxes, di-
vided by the number of boxes. On 1920 processors, the in-
terbox scaling efficiency is 0.966. Also, the algorithm in-
volves very small communication time �see Fig. 4�.

Figure 5 shows the execution time of the DC-DFT algo-
rithm per MD step as a function of the number of atoms for
alumina systems on 131 072 BlueGene/L processors, 1920
Itanium2 processors of Altix 3000, and 2000 Opteron pro-
cessors. On all three platforms, the execution time scales
linearly with the number of atoms. The largest benchmark
test in this study involves 11 796 480 atoms
�1 035 825 315 840 electronic degrees of freedom� on
131 072 BlueGene/L processors. The floating-point perfor-
mance of the DC-DFT algorithm on 1920 Itanium2 proces-
sors is 1.49 Tflops, compared to the theoretical peak perfor-
mance of 11.5 Tflops.

III. RESULTS

We have applied the parallel DC-DFT algorithm to liquid
rubidium �Rb�, graphene, and cadmium selenide �CdSe� na-
norods. In all these calculations, we use the norm-conserving
pseudopotentials proposed by Troullier and Martins.68 The
generalized gradient approximation70 is used for the
exchange-correlation energy in the DFT. The grid spacing �r
in the real-space electronic-structure calculations is selected

FIG. 4. Total execution �circles� and communication �squares�
times per MD time step as a function of the number of processors P
�=1, . . . ,1920� of Altix 3000 for the DC-DFT MD algorithm on
720P atom alumina systems.
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to be small enough to obtain good convergence of the total
energy of the system. Specifically, �r=1.00, 0.36, and
0.54 a.u. for liquid Rb, graphene, and CdSe nanorod sys-
tems, respectively.

A. Liquid rubidium

The conventional DFT method has been applied exten-
sively to liquid alkali metals82–87 to study the correlation
between conduction electrons and highly disordered state of
ions. In an application of the DC-DFT algorithm to metallic
systems, it is expected that the results are not sensitive to the
selection of boundary if the buffer length is large enough,
because there are no effects due to the covalent bond break-
ing and the existence of a dangling bond. Here, we use first-
principles MD simulation with interatomic forces computed
with the DC-DFT algorithm to study a disordered metallic
system, i.e., liquid Rb. The purpose is to demonstrate the
applicability of DC-DFT based MD simulation to metallic
systems and to compare the calculated structure with those
obtained experimentally as well as with the conventional
DFT-based MD results. Regarding finite electronic tempera-
ture in metallic systems, both Fermi-Dirac and Gaussian-
broadening schemes88,89 to treat fractional occupation num-
bers of the local Kohn-Sham orbitals are implemented in our
DC-DFT method. Since the Fermi energy 	F is determined
globally from the number of valence electrons Nel consider-
ing the local orbital energies in all domains, the fractional
occupation numbers are calculated unambiguously, and the
implementation is straightforward.

The DC-DFT based MD simulation involves 432 Rb at-
oms in a cubic cell of dimension 65.696 a.u. �Fig. 6�. The
size of the cell is determined from the experimental number
density 0.0103 Å−3 at 350 K near the triple point. The
squares shown by grid lines in Fig. 6 display the domains of
length 16.424 a.u. The buffer size is 8.212 a.u. The MD

simulations are carried out at 350 K in the microcanonical
ensemble. The equations of motion are integrated using the
velocity Verlet algorithm with a time step of �t=4.8 fs.

To test the applicability of the DC-DFT algorithm for
first-principles MD simulations, Fig. 7 plots the total and
potential energies as a function of time. The total energy is
conserved within 2�10−4 a.u. /ps per atom, which is 2 or-
ders of magnitude smaller than the variation in the potential
energy. �Before 2 ps, the velocities have been scaled to the
prescribed values every 0.08 ps, and therefore, the total en-
ergy was not conserved.� Thus, the total energy is satisfacto-
rily conserved in MD simulations.

Figure 8 compares the calculated pair-distribution func-
tions g�r� with a recent experimental result.90 As shown in
Fig. 8�a�, the g�r� obtained by the DC-DFT based MD simu-
lation is in good agreement with the experiment for a wide
range of distance r. In Fig. 8�b�, g�r� obtained by the con-
ventional DFT-based MD simulation involving 54 Rb
atoms85 is compared with the experimental data. Because of
the small system size, g�r� for the 54-atom system is re-
stricted to a limited range �10 Å. It is seen that the g�r� near
the cell boundary is affected by periodic boundary condi-
tions, and, consequently, marked deviations from the experi-
mental profile are recognized. On the other hand, g�r� ob-
tained by the DC-DFT algorithm has a smooth profile over
the entire range of r in Fig. 8�a� without finite-size effects.

FIG. 5. Benchmark tests of the DC-DFT MD algorithm on
131 072 BlueGene/L processors �circles�, 1920 Itanium2 processors
of Altix 3000 at NASA �squares�, and 2000 Opteron processors
�triangles�. The execution time per MD step is shown as a function
of the number of atoms, and lines show O�N� scaling.

FIG. 6. �Color� Atomic configuration of liquid Rb. The grid
lines show the domains in the DC-DFT calculations.

FIG. 7. Total �solid curve� and potential �dashed curve� energies
in the atomic unit as a function of time in MD simulation of liquid
Rb at 350 K �432 atoms in a cubic cell of side length 65.696 a.u.�.
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These results demonstrate the applicability of the DC-DFT
algorithm for large-scale first-principles MD simulations of
disordered metallic systems. Using this method, it is possible
to study long-range density fluctuations near the critical
point of liquid metals.

B. Graphene

For covalently bonded systems, the domains and bound-
aries should be carefully selected in the DC-DFT algorithm.
To test the ability of the DC-DFT algorithm to covalent sys-
tems, we use a graphene sheet as shown in Fig. 9. The ortho-
rhombic cell with dimensions of �Lx ,Ly ,Lz�
= �74.376 a.u. ,64.398 a.u. ,9.600 a.u.� contains 512 carbon
atoms. The domain size is 9.297�8.050�9.600 a.u..3 The
white grid lines in Fig. 9 show the domains in the xy plane.

The buffer width in each direction is taken to be half the
domain length. Microcanonical MD simulations are carried
out at 300 K using the velocity Verlet algorithm with �t
=1.2 fs. We find that the structure of graphene remains stable
during the dynamics simulations. Since our selection of the
domains and buffers is consistent with the periodicity of car-
bon atoms in the graphene, no covalent bond is “broken” at
the boundaries of all domains when the electronic states are
calculated locally. This helps stabilize the graphene structure.

To investigate the dynamic properties of graphene ob-
tained by the DC-DFT based MD simulation, we calculate
the velocity autocorrelation function ��t� and its Fourier

transformation �̃���, which are defined as

��t� =
�V� I�t� · V� I�0��

�V� I�0� · V� I�0��
and �̃��� = 	

0

�

��t�cos �tdt ,

respectively, where V� I�t� is the velocity of Ith atom at time t
and �¯� denotes taking the average over both atoms and
time origins. Figure 10 shows ��t� and �̃��� �see the solid
curves�. For comparison, the dashed curves in Fig. 10 show
conventional DFT-based MD results for a small system of
eight carbon atoms. As shown by the solid curve in Fig.

FIG. 8. �Color� Radial distribution functions g�r� of liquid Rb at
350 K. The solid lines in �a� and �b� show 432-atom DC-DFT and
54-atom conventional DFT results, respectively. The open circles
show the recent experimental results.

FIG. 9. �Color� Atomic configuration of graphene. The grid lines
show the domains in the DC-DFT calculations.

FIG. 10. �a� Velocity autocorrelation function ��t� of graphene.
�b� Fourier transformation �̃��� of ��t�. The solid and dashed lines
show the 512-atom DC-DFT and 8-atom DFT results, respectively.
�c� VDOS for graphene obtained by density-functional perturbation
theory lattice dynamics in the generalized gradient approximation.
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10�b�, �̃��� for the 512-atom system correctly describes
lower-frequency components with ��140 meV, which cor-
responds to the long-range acoustic modes of graphene,
while �̃��� for the 8-atom system consists of only the
higher-frequency peak, which corresponds to the short-range
optical modes. The frequency range and peak positions for
the large system are consistent with the vibrational density of
states91 �VDOS� obtained by density functional perturbation
theory lattice dynamics displayed in Fig. 10�c� and high en-
ergy electron-energy loss spectroscopy measurements.92

C. Cadmium selenide

It is not obvious whether the DC-DFT algorithm is appli-
cable to systems with broken covalent bonds such as amor-
phous semiconductors and clusters. To test the applicability,
we calculate the band gaps �BGs� of semiconductor nano-
crystals with the DC-DFT algorithm and compare them with
those obtained by a conventional DFT method. The BG is
calculated as BG=IP−EA, where IP and EA are the ioniza-
tion potential and the electron affinity, respectively.93 Since
our formalism is completely in the real space, it is easy to
obtain the IP and EA for finite systems by extracting and
adding one electron, respectively. However, it is necessary to
specify the boundary where the amplitude of electronic wave
functions becomes zero, especially for systems with an extra
electron. To obtain the electronic wave functions, we use a
spheroidal boundary, and specify it by the distance R be-
tween the outermost atom and the boundary. To determine
the BG, it is crucial to know the R dependence of the BG,
because it is expected that both the IP and EA depend
strongly on R.

Before simulating CdSe nanorods, we tested the conver-
gence properties of the DC-DFT algorithm. For these nu-
merical tests and subsequent simulations, we used periodic

boundary conditions to obtain local Kohn-Sham orbitals, be-
cause a faster convergence was achieved compared with the
rigid-wall boundary conditions. Since we discard the wave
functions within the secondary buffer layers, numerical re-
sults are likely to be insensitive to the choice of the support
function.

The DC-DFT algorithm has a well-defined set of localiza-
tion parameters, with which the computational cost and the
accuracy are controlled, i.e., the size of a domain and the
length of buffer layers. We first test the convergence of the
algorithm with respect to the domain size. Figure 11�a�
shows the potential energy as a function of the domain size
for an amorphous CdSe system containing 512 atoms in a
cubic cell of length 45.664 a.u. The amorphous configuration
is prepared by a melt-quench procedure94 in MD simulation
based on an empirical interatomic potential.95 Here, and in
the following, the grid spacing is chosen as 0.476 a.u. The
total buffer size d is fixed at 2.854 a.u. In all the numerical
tests, the primary buffer size is chosen as d1=d /2. The en-
ergy converges within 0.003 a.u. per atom above the domain
size of 6 a.u. The number of self-consistent iterations re-
quired for convergence decreases with increased domain
size, as shown by the numerals in Fig. 11�a�.

Next, we test the convergence of the potential energy as a
function of the buffer size d for an amorphous CdSe system
containing 512 atoms in a cubic cell of length 45.664 a.u.
�see Fig. 11�b��. The domain size of 11.416 a.u. is fixed. The
potential energy converges within 0.001 a.u. per atom above
d=4 a.u. The number of self-consistent iterations required
for convergence decreases with increased buffer length size,
as shown by the numerals in Fig. 11�b�.

We use a CdSe nanorod95,96 consisting of 216 Cd and 216
Se atoms. The atomic configuration of the nanorod is shown
in Fig. 12. The diameter and length of the rod are 35.8 and
54.0 a.u., respectively. In the DC-DFT calculations, the do-
main and buffer lengths are chosen as �8.0 and 6.0 a.u.,

FIG. 11. �a� Potential energy per atom as a function of the domain size for an amorphous CdSe system �512 atoms in a cubic cell of side
length 45.664 a.u.�. The buffer size is fixed as 2.854 a.u. The atomic units are used for both energy and length. Numerals in the figure
indicate the number of self-consistent iterations required for the convergence of the electron density within ����i�r��−�i−1�r��� /�0�2��10−4,
where �i�r�� is the electron density at ith iteration, �0 is the average electron density, 0.0215 a.u., and the brackets denote the average over
the grid in the entire system. �b� Potential energy as a function of the buffer width d for an amorphous CdSe system �512 atoms in a cubic
cell of side length 45.664 a.u.�. The domain size is fixed as 11.416 a.u. The atomic units are used for both energy and length. Numerals in
the figure indicate the number of self-consistent iterations required for the convergence of the electron density.
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respectively, which are slightly changed depending on R be-
cause of geometric reasons.

Figure 13 shows the IP, EA, and BG obtained by both the
DC-DFT and conventional DFT methods. The agreement be-
tween the two results is excellent �within 0.01 hartree at R
=14.5 a.u.� where the latter is available, which indicates that
the intrinsic properties of the electronic states of CdSe nano-
rods are described correctly by the DC-DFT method. The
DC-DFT algorithm allows the calculation to be extended to
larger R, where the BG value converges to 1.1 eV above R
=20 a.u. Experimentally, the BG of rodlike CdSe quantum
dots has been measured to be �2 eV depending on the size
of the quantum dots.97 The discrepancy between the theoret-
ical and experimental values may be due to the treatment of
the surface. Passivating the surface by hydrogenlike atoms
may increase the theoretical BG as pointed out by Che-
likowsky and co-workers.98,99

IV. SUMMARY

In conclusion, we have developed a linear-scaling divide-
and-conquer density-functional-theory algorithm for large
first-principles molecular-dynamics simulations. In the
hierarchical-grid DC-DFT algorithm, electronic wave func-
tions are represented on a hierarchical real-space grid that
combines a coarse multigrid and adaptive fine grids around
atoms. With spatial decomposition, the DC-DFT algorithm
has been implemented on massively parallel computers with
high parallel efficiency, e.g., 11.8�106-atom �1.04�1012

electronic degrees of freedom� calculation on 131 072 IBM
BlueGene/L processors. The DC-DFT algorithm has well-
defined parameters to control the data locality, with which

the solutions converge rapidly. Also, the total energy is well
conserved during MD simulation. We have performed first-
principles MD simulations based on the DC-DFT algorithm,
in which the large system sizes have brought in excellent
agreement with x-ray scattering measurements of the pair-
distribution function of liquid Rb and have allowed correct
description of low-frequency vibrational modes of graphene.
The band gap of CdSe nanorods calculated by the DC-DFT
algorithm agrees well with conventional DFT results. With
the DC-DFT algorithm, we have calculated the band gap for
larger system sizes until it saturates to an asymptotic value.
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